Web Programming with SMLserver

Martin Elsman* Niels Hallenberg
mael@it.edu nh@it.edu

IT University of Copenhagen.
Glentevej 67, DK-2400 Copenhagen NV, Denmark

Abstract. SMLserver is an efficient multi-threaded Web server platform
for Standard ML programs. It provides access to a variety of different
Relational Database Management Systems (RDBMSs), including Ora-
cle, MySQL, and PostgreSQL. We describe the execution model and the
region-based memory model of SMLserver and explain our solutions to
the design issues we were confronted with in the development. We also
describe our experience with programming and maintaining Web appli-
cations using Standard ML, which provides higher-order functions, static
typing, and a rich module system. Through experiments based on user
scenarios for some common Web tasks, the paper demonstrates the effi-
ciency of SMLserver, both with respect to script execution and database
connectivity.

1 Introduction

Higher-order functions and a modules language for exposing the functionality
of composable components are promising features for Web application devel-
opment, where code reuse and separation of programming tasks (layout from
implementation) are of primary concern.

The rapid change and development of Web applications combined with the
way that Web applications are exposed to users also suggests that Web appli-
cations should be particularly robust to changes and easy to maintain. This
observation is in contrast to how most Web applications are built—mnamely with
scripting languages that have only limited support for finding errors in the pro-
gram before it is exposed to users. A powerful static type system, on the other
hand, enforces many programming errors to be found and fixed at compile time,
although with the cost of an imposed compilation step in the development cycle.

SMLserver [7] is a Web server platform for Standard ML [14], a program-
ming language which provides the features requested above, namely higher-order
functions, a rich module system, and a powerful static type system. SMLserver
builds on a bytecode backend and interpreter for the ML Kit [22], a compiler
for the full Standard ML programming language. The interpreter, called the Kit
Abstract Machine (KAM) [6], is embedded in a module for AOLserver, an open
source Web server provided by America Online.! The KAM supports caching of

* Part time at Royal Veterinary and Agricultural University of Denmark.
1 A port of SMLserver to the open source Web server Apache is ongoing.

loaded code, multi-threaded execution, and other features, including database
interoperability.

The focus of this work is two-fold. We first demonstrate that programming
Web applications with Standard ML provides many useful programming idioms,
based on higher-order functions, static typing, and the rich Standard ML mod-
ule system. Second, we present evidence that Web server support for high-level
functional programming languages, such as Standard ML, can be as efficient as
the use of highly tuned scripting languages, such as TCL and PHP.

1.1 Background

The ideas behind SMLserver came to mind in 1999 when the first author was
attending a talk by Philip Greenspun, the author of the book “Philip and Alex’s
Guide to Web Publishing” [11]. Philip and his coworkers had been writing an
astonishing 250,000 lines of dynamically typed TCL code to implement a com-
munity system that they planned to maintain, extend, and even customize for
different Web sites. Although Philip and his coworkers were very successful with
their community system, the dynamic typing of TCL makes such a large system
difficult to maintain and extend, not to mention customize.

The SMLserver project was initiated at the end of 2000 by the construction of
an embeddable runtime system and a bytecode backend for the ML Kit. Once the
bytecode backend and the embeddable runtime system was in place, the KAM
was embedded in an AOLserver module in such a way that requests for files with
extension .sml and .msp (also called scripts) cause the corresponding compiled
bytecode files to be loaded and executed. In April 2001, the basic system was
running, but more work was necessary to support caching of loaded code, multi-
threaded execution, and other features, such as database interoperability and a
type safe caching interface. SMLserver is open source and distributed under the
GNU General Public License (GPL).

1.2 Outline of the Paper

The paper proceeds as follows. In Sect. 2, we describe how SMLserver serves re-
quests by loading and executing compiled scripts. In Sect. 3, we demonstrate the
use of higher-order functions and type polymorphism for providing a type safe
caching (i.e., memoization) interface for SMLserver Web scripts. In Sect. 4, we
describe how SMLserver scripts may interface to an RDBMS through a generic
interface, which makes extensive use of higher-order functions and type poly-
morphism for convenient access and manipulation of data in an RDBMS.

In Sect. 5, we describe how the region based memory model scales to a
multi-threaded environment where programs run shortly, but are executed often.
In Sect. 6, we demonstrate the efficiency of SMLserver, both with respect to
script execution and database connectivity, by comparing the number of requests
SMLserver may serve each second with numbers for other Web server platforms.
We also measure the effect that some of the design decisions we were confronted

with in the development have on script execution time. Finally, we describe
related and future work and conclude.

2 Serving Pages to Users

We shall now see how to create a small Web service for presenting the time-
of-day to a user. The example uses the Time.now function from the Standard
ML Basis Library to obtain the present time of day. HTML code to send to the
user’s browser is constructed using Standard ML string primitives:

val time_of_day = Date.fmt "%H.%M.%S" (Date.fromTimeLocal(Time.now()))
val _ = Ns.Conn.return

"<html><head><title>Time of day</title></head> \

\ <body bgcolor=white><h2>Time of day</h2> \

\ The time of day is " ~ time_of_day ~ ".<hr></i> \
\ Served by SMLserver</i> \
\</body></html>"

The result of a user requesting the file time_of _day.sml from the Web server is
shown in Fig. 1. The script uses the function Ns.Conn.return to send an HTTP
response with HTTP status code 200 (Page found) and MIME type text/html
to the browser along with HTML code passed in the argument string.

xl i =l (=)
<] Back » [» & ¢} (® siop[100 [2] @& |hitpwww.smiserver.org/demostime_of_day. sml j

Time of day

The time of day is 16.03.28,

Served by SLserver

Fig. 1. The result of requesting the script time_of_day.sml.

In Sect. 2.2 we shall see how support for quotations may be used to embed
HTML code in Web applications somewhat more elegantly than using Standard
ML string literals. SMLserver also supports an alternative to quotations and
strings in the form of an abstract combinator library for constructing HTML
code. Although the use of the combinator library does not guarantee the validity
of the generated HTML code, it may help eliminate certain types of errors at
compile time. In addition, SMLserver has support for ML Server Pages, which
provides a notation for embedding Standard ML code in HTML code, similar to
PHP and Microsoft’s Active Server Pages (ASP). ML Server Pages are stored in
files with extension .msp.

2.1 Loading and Serving Pages

SMLserver is implemented as a module nssml.so, which is loaded into the
AOLserver Web server when the Web server starts. At this time, future re-
quests for scripts (i.e., .sml-files and .msp-files) are served by interpreting the
bytecode file that is the result of compiling the requested script. Compilation of
scripts into bytecode files is done by the user explicitly invoking the SMLserver
compiler smlserverc. The SMLserver compiler takes as argument a project file,
which lists the scripts that a client may request along with Standard ML library
code to be used by the scripts.

The first time a script is requested, SMLserver executes initialization code
for each library file and caches the resulting initial heap, which can then be
used for execution of the requested script and future requests. To serve a script,
SMLserver first loads the requested script and caches the result (if it is not
already in the cache), after which the script is executed. After execution, the
heap is restored and made available for future requests.

Thus, SMLserver initiates execution in identical initial heaps each time a
request is served, which means that it is not possible to maintain state implic-
itly in Web applications using Standard ML references or arrays. Instead, state
must be maintained explicitly using a Relational Database Management System
(RDBMS) or the cache primitives supported by SMLserver. Another possibility
is to emulate state behavior by capturing state in form variables or cookies.

At first, this limitation may seem like a major drawback. However, the limi-
tation has several important advantages:

— Good memory reuse. When a request has been served, memory used for

serving the request may be reused for serving other requests.

Support for a threaded execution model. Requests may be served simulta-

neously by interpreters running in different threads without the need for

maintaining complex locks.

Good scalability properties. For high volume Web sites, the serving of re-

quests may be distributed to several different machines that communicate

with a single database server. Serving many simultaneous requests from mul-

tiple clients is exactly what an RDBMS is good at.

— Good durability properties. Upon Web server and hardware failures, data
stored in Web server memory is lost, whereas data stored in an RDBMS
may be restored using the durability features of the RDBMS.

The limitation does not suggest that session support is impossible; sessions
with timeout semantics can be encoded using SMLserver’s caching features.

2.2 Quotations for HTML Embedding

Although SMLserver supports generation of HTML code through HTML com-
binators, it is sometimes more convenient to write HTML code directly. In this
section we introduce the notion of quotations [19], an elegant extension to Stan-
dard ML, which eases readability and maintainability of embedded object lan-
guage fragments (e.g., HTML code) within Standard ML programs. Although

quotations are not officially Standard ML [14], many compilers provide support
for quotations, including Moscow ML, SML/NJ, and the ML Kit. Here is a small
quotation example that demonstrates the basics of quotations:

val text = "fun"

val ulist : string frag list =
‘<1i>Web programming is “text
‘

The program declares a variable text of type string, a variable ulist of type
string frag list, and indirectly makes use of the constructors of this prede-
clared datatype:

datatype ’a frag = QUOTE of string | ANTIQUOTE of ’a
What happens is that the quotation bound to ulist evaluates to the list:
[QUOTE "<1i>Web programming is ", ANTIQUOTE "fun", QUOTE "\n"]

Using the Quot.flatten function, which has type string frag list->string,
the value bound to ulist may be turned into a string (which can then be sent
to a browser.)

To be precise, a quotation is a particular kind of expression that consists of a
non-empty sequence of (possibly empty) fragments surrounded by back-quotes:

exp = ‘frags® quotation

frags = charseq character sequence
| charseq ~id frags anti-quotation id
| charseq ~Cexp) frags anti-quotation exp

A character sequence, written charsegq, is a possibly empty sequence of printable
characters or spaces or tabs or newlines, with the exception that the characters
~ and ¢ must be escaped using the notation ~~ and ~ ¢, respectively.

A quotation evaluates to a value of type ty frag list, where ty is the type
of all anti-quotation variables and anti-quotation expressions in the quotation.
A character sequence fragment charseq evaluates to QUOTE "charseq". An anti-
quotation fragment ~id or ~ (exp) evaluates to ANTIQUOTE walue, where value is
the value of the variable id or the expression exp, respectively.

To ease programming with quotations, the type constructor quot is declared
at top-level as an abbreviation for the type string frag list. Moreover, the
symbolic identifier =~ is declared as an infix identifier with type quot * quot
-> quot and associativity similar to @.

2.3 Obtaining Data from Users

The following example demonstrates the use of quotations for embedding HTML
code and the use of the SMLserver Library structure FormVar for accessing and
validating user input and so-called “hidden” form variables for emulating state in
a Web application. The example that we present is a simple Web game, which,
by use of the functionality in the structure Random, asks the user to guess a
number between zero and 100:

fun returnPage title pic body = Ns.return

‘<html><head><title>"title</title></head>
<body bgcolor=white> <center>
<h2>"title</h2> <p>

~(Quot.toString body) <p> <i>Served by SMLserver

</i> </center> </body>

</html>°

fun mk_form (n:int) =
‘<form action=guess.sml method=post>
<input type=hidden name=n value="(Int.toString n)>
<input type=text name=guess>
<input type=submit value=Guess>
</form>*¢

fun processGuess n =
case FormVar.wrapOpt FormVar.getNat "guess"
of NONE => returnPage "You must type a number - try again"
"bill_guess.jpg" (mk_form n)
| SOME g => if g > n then
returnPage "Your guess is too big - try again"
"bill_large.jpg" (mk_form n)
else if g < n then
returnPage "Your guess is too small - try again"
"bill_small.jpg" (mk_form n)
else
returnPage "Congratulations!" "bill_yes. jpg"
‘You guessed the number ~(Int.toString n) <p>
Play again?‘
val _ =
case FormVar.wrapOpt FormVar.getNat "n"
of NONE => let (* generate new random number *)

val n = Random.range(0,100) (Random.newgen())

in returnPage "Guess a number between O and 100"

"bill_guess. jpg" (mk_form n)
end
| SOME n => processGuess n

The functions returnPage and mk_form use quotations for embedding HTML
code. The function Ns.return, which takes a value of type quot as argument,
returns the argument to the client.

The expression FormVar.wrapOpt FormVar.getNat results in a function of
type string -> int option. The function takes the name of a form variable
as argument and returns SOME (¢), where ¢ is an integer obtained from the string
value associated with the form variable. If the form variable does not occur in
the query data, is not a well-formed natural number, or its value does not fit
in 32 bits, the function returns NONE. The argument given to FormVar .wrapOpt,
namely FormVar.getNat, is a function with type string -> int and the prop-

erty that it raises an exception if its argument is not a proper natural number.
The use of higher-order functions for form variable validation is necessary to ob-
tain a shallow interface and gain a high degree of code reuse. In particular, the
FormVar structure provides wrapper functions that make it possible to report
multiple error messages to the user concerning invalid form content.

In the case that no form variable n exists, a new random number is generated
and the game is started by presenting an introduction line to the player along
with a form for entering the first guess. The game then proceeds by returning
different pages to the user depending on whether the user’s guess is greater
than, smaller than, or equal to the random number n.

Notice that the game uses the HTTP request method POST, so that the
random number that the user is to guess is not shown in the browser’s location
field. Tt is left as an exercise to the reader to find out how—with some help from
the Web browser—it is possible to “guess” the number using only one guess.
Figure 2 shows three different pages served by the “Guess a Number” game.

[x] 2 [F1E1E (= 2 (1= i, ClEE
Guess a number Your guess is too Congratulations!
between ¢ and 100 big - try again

“ou guessed the number 49

s _Guess| a3 Guess | Play again?
Served by SMLserver Served by SMLserver Served by SMLserver

Fig. 2. Three different pages served by the “Guess a Number” game.

3 Caching Support

SMLserver has a simple type safe caching interface that can be used to cache
data so that information computed by some script invocation can be used by sub-
sequent script invocations. The cache functionality is implemented as a structure
Cache, which matches the signature CACHE listed in Fig. 3.

A cache of type («a,) cache maps keys of type a Type to values of type
B Type. The cache interface defines a set of base types (e.g., Int, Real and
String) and a set of type constructors to build new types (e.g., Pair, List, and

signature CACHE =
sig
datatype kind = WhileUsed of int | TimeOut of int | Size of int
type (’a,’b) cache
type ’a Type
type name = string

val get : ’a Type * ’b Type * name * kind -> (’a,’b) cache
val memoize : (’a,’b) cache -> (’a -> ’b) -> ’a -> ’b
val Int : int Type
val Real : real Type
val String : string Type
val Pair : ’a Type -> ’b Type -> (’ax’b) Type
val Option : ’a Type -> ’a option Type
val List : ’a Type -> ’a list Type
end

Fig. 3. The cache interface.

Option). A cache has a cache name, which is represented by a Standard ML
string. SMLserver supports three kinds of caches:

— Size caches. Entries in caches of kind Size(n) expire when there is not
enough room for a new entry (maximum cache size is n bytes). Oldest entries
expire first.

— Timeout caches. For caches of kind TimeOut (¢), an entry expires ¢ seconds
after it is inserted. This kind of cache guarantees that the cache is updated
with freshly computed information, even if the cache is accessed constantly.

— Keep-while-used caches. An entry in a cache of kind WhileUsed(¢) expires
when it has not been accessed in ¢ seconds. This kind of cache is useful for
caching authentication information, such as passwords, so as to lower the
pressure on the RDBMS.

The function get obtains a cache given a domain type, a range type, a cache
name, and a kind. The first time get is called with a particular domain type, a
particular range type, and a particular cache name, a new cache is constructed.
Conceptually one can think of the function get as having the constrained (or
bounded) polymorphic type [8]

Va < Type, B < Type . name * kind -> (a,) cache

where Type denotes the set of types supported by the cache interface. As an
example, the following expression constructs a cache named mycache, which
maps pairs of integers to lists of reals:

get (Pair Int Int, List Real, "mycache", Size (9%1024))

The function memoize adds caching functionality (i.e., memoization) to a
function. Assuming that the function f has type int -> string * real and
c is an appropriately typed cache, the expression memoize ¢ f returns a new
function f’, which caches the results of evaluating the function f. Subsequent
calls to f/ with the same argument results in cached pairs of strings and reals,
except when a result no longer lives in the cache, in which case f is evaluated
again.

The cache interface also provides functions for flushing caches, adding entries,
and deleting entries (not shown in the signature above).

We now present a currency exchange rate service that uses the function
memoize to cache an exchange rate obtained from a foreign Web site. The Web
service is implemented as a single file exchange.sml:

structure C = Cache
val ¢ = C.get (C.String, C.Option C.Real, "currency", C.TimeOut 300)
val form = ‘<form method=post action=exchange.sml>
Dollar amount
<input type=text name=a>
<input type=submit value="Value in Danish Kroner">
</form>*
fun fetchRate url =
case Ns.fetchUrl url of
NONE => NONE
| SOME pg => let val pattern = RegExp.fromString
" .+USDDKK. +<td>([0-9]+) . ([0-9]+) </td>.+"
in case RegExp.extract pattern pg
of SOME [r1,r2] => Real.fromString (ri1~".""r2)
| _ => NONE
end
val fetch = C.memoize c fetchRate
val url = "http://se.finance.yahoo.com/m57s=USD&t=DKK"
val body = case FormVar.wrapOpt FormVar.getReal "a"
of NONE => form
| SOME a =>
case fetch url
of NONE => ‘The service is currently not available®
| SOME rate =>
¢~ (Real.toString a) USD gives
“(Real.fmt (StringCvt.FIX(SOME 2)) (a*rate)) DKK.
<p>¢ "~ form
val _ = Page.return "Currency Exchange Service" body

The program creates a cache ¢ that maps strings (base type String) to optional
reals (constructed type Option Real). The cache kind TimeOut is used to limit
the pressure on the foreign site and to make sure that the currency rate is
updated every five minutes.

The exchange rate (American dollars to Danish kroner) is obtained by fetch-
ing a Web page using the function Ns.fetchUrl, which takes an URL as argu-
ment and returns the contents of the page as a string. Once the page is received,

support for regular expressions is used to extract the appropriate information
(the currency exchange rate) from the Web page.

The function Page.return is used to return HTML code to the client; the
function takes two arguments, a string denoting a title for the page and a body
for the page in terms of a value of type quot.

4 Interfacing with an RDBMS

In this section we present an interface for connecting to an RDBMS from within
Web scripts written with SMLserver. We shall not argue here that it is a good
idea to use an RDBMS for keeping state on a Web server, but just mention that
a true RDBMS provides data guarantees that are difficult to obtain using other
means. RDBMS vendors have also solved the problem of serving simultaneous
users, which make RDBMSs ideal for Web purposes.

The language used to communicate with the RDBMS is the standardized
Structured Query Language (SQL). Although each RDBMS has its own exten-
sions to the language, to some extent, it is possible with SMLserver to write
Web services that are indifferent to the RDBMS of choice. SMLserver scripts
may access and manipulate data in an RDBMS through the use of a structure
that matches the NS_DB signature:

signature NS_DB =

sig
structure Handle :
val dml : quot -> unit
val foldr : ((string->string)*’a->’a)->’a->quot->’a
val qq : string -> string
val qqq : string -> string
end

Because SMLserver supports the Oracle RDBMS, the PostgreSQL RDBMS,
and MySQL, there are three structures in the Ns structure that matches the
NS_DB signature, namely Ns.DbOra, Ns.DbPg, and Ns.DbMySQL. The example
Web server project file includes a file Db.sml, which binds a top-level structure
Db to the structure Ns.DbPg; thus, in what follows, we shall use the structure Db
to access the PostgreSQL RDBMS.

A database handle identifies a connection to an RDBMS and a pool is a set
of database handles. When the Web server is started, a configurable number
of pools are created. At any time, a database handle is owned by at most one
script. Moreover, the database handles owned by a script at any one time belong
to different pools. The database functions request database handles from the
initialized pools and release the database handles again in such a way that dead-
locks are avoided; with the use of only one pool with two database handles, say,
a simple form of deadlock would appear if two scripts executing simultaneously
each had obtained a database handle from the pool and were both requesting a
second database handle.

The NS_DB function dml with type quot->unit is used to execute SQL data
manipulation language statements (i.e., insert and update statements) in the
RDBMS. On error, the function raises the top-level exception Fail.

The function foldr, is used to access data in the database. A select state-
ment is passed as an argument to the function. The function is similar to the
Basis Library function List.foldr. An application foldr f b sql executes the
SQL statement given by the quotation sql and folds over the result set, similarly
to how List.foldr folds over a list. The function f is the function used in the
folding with base b. The first argument to f is a function of type string->string
that maps column names into values for the row. Because the number of database
handles owned by a script at any one time is limited to the number of initialized
pools, nesting of applications of database access functions (such as foldr) is lim-
ited by the number of initialized pools. On error, the function raises the top-level
exception Fail and all involved database handles are released appropriately.

The function qq, which has type string->string, returns the argument
string in which every occurrence of a quote (’) is replaced with a double occur-
rence (’’), which is how quotes are escaped in SQL string literals. The function
qqq is similar to the qq function with the extra functionality that the result is
encapsulated in quotes (°...?).

We now show a tiny “Guest Book” example, which demonstrates the database
interface. The example consists of the file guest.sml, which presents guest book
entries and a form for entering new entries, and a file guest_add.sml, which
processes a submitted guest book entry. The data model, which is the basis for
the guest book service, consists of a simple SQL table:

create table guest (
email varchar (100),
name varchar (100),
comment varchar (2000)

);

The table guest contains the three columns email, name, and comment. A row
in the table corresponds to a form entry submitted by a user; initially, the table
contains no rows. The file guest.sml includes the following code:

val form = ‘<form method=post action=guest_add.sml><table>
<tr><td valign=top colspan=3>New comment

<textarea name=c cols=65 rows=3
wrap=virtual>Fill in...</textarea></tr>
<tr><td>Name
<input type=text size=25 name=n>
<td>Email
<input type=text size=25 name=e>
<td>
<input type=submit value="Add">
</tr></table></form>°

fun layoutRow (f,acc) =
€<1i> <i>~(f "comment")</i>
-- "(f "name")<p>‘ ~~ acc

val rows = Db.foldr layoutRow ‘¢
‘select email,name,comment from guest order by name°

val _ = Page.return "Guest Book" (‘‘ ~~ rows ~~ ‘‘ ~" form)

The function Db.foldr is used to query the database for rows in the table; the
function layoutRow, which has type (string->string)*quot->quot is used to
format each row appropriately. The first argument passed to this function is a
function, which returns the contents of the given column in the row. Notice also
that quotations are used to embed SQL statements in the code. Figure 4 shows
the result of requesting the file guest.sml. The file guest_add.sml, which we

& . =1 (515
Guest Book
o Owick, give me the number fo 911/ - Homer Simpson
New comment
’Iill in. ..
Name Email

| | A

Served by SMiserver

Fig. 4. The result of requesting the file guest.sml.

shall not list here, uses the FormVar functionality for extracting form variables
and the function Db.dml to add an entry in the guest table.

For databases that support transactions, SMLserver supports transactions
through the use of the Handle structure.

5 The Execution Model

Before we describe how SMLserver caches loaded bytecode to gain efficiency
and how a multi-threaded execution model makes it possible for SMLserver to
serve multiple requests simultaneously, we describe the region-based memory
management scheme used by SMLserver.

5.1 Region-based Memory Management

The memory management system used in SMLserver is based on region inference
[23], but extended appropriately to deal correctly with multi-threaded program

execution. Region inference inserts allocation and deallocation directives in the
program at compile time; no pointer-tracing garbage collection is used at run-
time.

In the region memory model, the store consists of a stack of regions. Region
inference turns all value producing expressions e in the program into e at p,
where p is a region variable, which denotes a region in the store at runtime.
Moreover, when e is an expression in the source program, region inference may
turn e into the target expression letregion p in €’ end, where €’ is the target
of analyzing sub-expressions in e and p is a region variable. At runtime, first an
empty region is pushed on the stack and bound to p. Then, the sub-expression
€’ is evaluated, perhaps using p for allocation. Finally, upon reaching end, the
region is deallocated from the stack. Safety of region inference guarantees that
a region is not freed until after the last use of a value located in that region [23].
Functions in the target language can be declared to take regions as arguments
and may thus, depending on the actual regions that are passed to the function,
produce values in different regions for each call.

After region inference, the region-annotated program is compiled into byte-
code for the KAM through a series of compilation phases [5, 1, 6]. Dynamically,
a region is represented as a linked list of constant-sized region pages, which are
chunks of memory allocated from the operating system. When a region is deallo-
cated, region pages in the region are stored in a free list, also from which region
pages are obtained when more memory is requested for allocation.

A consequence of region-based memory management is that no tags are
needed at runtime to distinguish between different types of values, as are usually
necessary for pointer tracing garbage collection.

For all the programs that we have developed using SMLserver, region in-
ference has proven to recycle memory sufficiently without using a combination
of region inference and garbage collection [12] or enforcing the programmer to
write region-friendly programs.

5.2 Multi-Threaded Execution

SMLserver supports multi-threaded execution of scripts with a shared free list of
region pages. The memory model allows two threads executing simultaneously
to own the same region page at two different points in time. This property, which
can potentially reduce the overall memory usage, is obtained by protecting the
free list with mutual exclusion locks (i.e., mutex’s).

SMLserver also maintains a mutex-protected pool of initial heaps, which
makes it possible to eliminate the overhead of library initialization in the pres-
ence of multi-threaded execution. Before a script is executed, an initial heap is
obtained from the pool. After execution, the heap is recovered before it is given
back to the pool. For type safety, the process of recovering the pool involves
restoring the initial heap to ensure that mutable data (e.g., references) in the
initial heap are reinitialized.

For the Standard ML Library, approximately 18kb of region pages, containing
mostly closures, are copied each time a heap is recovered. By storing mutable

data (i.e., references and arrays) in distinct regions, most of the copying can be
avoided, which may further improve the efficiency of SMLserver.

6 Measurements

In this section, we measure the performance of SMLserver with respect to script
execution time and compare it to a CGI-based ML Server Pages implementation,
TCL on AOLserver, and PHP on Apache (Apache 1.3.22). We also measure the
effect that caching of compiled scripts has on performance. Finally, we measure
the overhead of interpreting initialization code for libraries for each request.

All measurements are performed on an 850Mhz Pentium 3 Linux box, equip-
ped with 384Mb RAM. The program we use for benchmarking is ApacheBench,
Version 1.3d.

The benchmark scripts include eight different scripts. The hello script re-
turns a small constant HI'ML document. The date script uses a library function
to show the current date. The script db connects to a database and executes a
simple query. The script guest returns three guest list entries from the database.
The script calendar returns 13 formatted calendar months. The script mul re-
turns a simple multiplication table. The script table returns a 500 lines HTML
table. The script log returns a 500 lines HTML table with database content.

The use of higher-order functions, such as List.foldl and List.map, in the
MSP version of the calendar script are translated into explicit while loops in
the TCL and PHP versions of the script.

Performance figures for SMLserver on the eight benchmark scripts are shown
in the fourth column of Table 1. The column shows, for each benchmark, the
number of requests that SMLserver serves each second when ApacheBench is
instructed to have eight threads issue requests simultaneously for 60 seconds.
Measurements for the Web server platforms MosML/MSP, AOLserver/TCL, and
Apache/PHP are shown in the first three columns. There are two observations
to point out:

1. For all scripts, SMLserver performs better than any of the other Web server
platforms.

2. The MosML/MSP platform performs worse than any of the other three plat-
forms on any of the benchmark scripts, most probably due to the CGI ap-
proach used by MosML/MSP.

The fifth column of Table 1 shows the efficiency of SMLserver with caching of
script bytecode disabled (caching of library bytecode is still enabled). The mea-
surements demonstrate that caching of script bytecode improves performance
between 3 and 53 percent with an average of 37 percent.

The sixth column of Table 1 shows the efficiency of SMLserver with library
execution enabled on all requests (library and script code is cached). Execution
of library code on each request degrades performance between 10 and 74 per-
cent with an average of 44 percent. The performance degrade is highest for less
involved scripts. The four scripts hello, date, db, and guest use more time on
library execution than executing the script itself.

Requests / second
Program|MosML AOLserver Apache SMLserver | No script With library
MSP TCL PHP MSP caching execution
hello 55 724 489 1326 916 349
date 54 855 495 1113 744 337
db 27 558 331 689 516 275
guest 25 382 274 543 356 249
calendar 36 27 37 101 69 80
mul 50 185 214 455 300 241
table 21 59 0.7 93 84 75
log 8 12 0.4 31 30 28

Table 1. The first four columns compares script execution times for SMLserver with
three other Web server platforms. Caching of loaded script bytecode improves perfor-
mance between 3 and 53 percent (column five). Column six shows that execution of
library code on each request degrades performance between 10 and 74 percent.

7 Related Work

Related work fall into several categories. First, there is much related work on
improving the efficiency of CGI programs [15], in particular by embedding in-
terpreters within Web servers [20], which may drastically decrease script initial-
ization time. In particular, expensive script forking and script loading may be
avoided and a pool of database connections can be maintained by the Web server,
so that scripts need not establish individual connections to a database.

Second, there is a large body of related work on using functional languages for
Web programming. Meijer’s library for writing CGI scripts in Haskell [13] pro-
vides low-level functionality for accessing CGI parameters and sending responses
to clients. Thiemann extends Meijer’s work by providing a library WASH/CGI
[21], which supports sessions and typing of forms and HTML using combina-~
tors. The mod_haskell project [4] takes the approach of embedding the Hugs
Haskell interpreter as a module for the Apache Web server. Also, Peter Sestoft’s
ML Server Pages implementation for Moscow ML [17] provides good support for
Web programming, although it is based on CGI and thus does not provide high
efficiency (see Table 1).

Graunke et al. [10] demonstrate that programming a Web server infrastruc-
ture in a high-level functional language can be as efficient as utilizing an existing
Web server infrastructure. Their work does not suggest, however, how multi-
threaded execution of scripts can be supported in the context of server state.
Using an existing Web server infrastructure, such as Apache or AOLserver, also
has the advantage of pluggable modules for providing SSL (Secure Socket Layer)
support and efficient pool-based database drivers for a variety of database sys-
tems.

Queinnec [16] suggests using continuations to implement the interaction be-
tween clients and Web servers. In a separate paper, Graunke et al. [9] demon-

strate how Web programs can be written in a traditional direct style and trans-
formed into CGI scripts using CPS conversion and lambda lifting. In contrast to
Queinnec, their approach uses the client for storing state information (i.e, con-
tinuation environments) between requests. It would be interesting to investigate
if this approach works for statically typed languages, such as Standard ML.

Finally, <bigwig> [18, 2] provides a type system, which guarantees that Web
applications return proper HTML to clients. To support typing of forms and
sessions (to ensure type safety), <bigwig> programs are written in a special
domain-specific language. Also, the session support provided by <bigwig> raises
the question of when session state stored on the Web server should be garbage
collected.

8 Future Directions

There are many directions for future work. One ongoing direction is the develop-
ment of an SMLserver Community Suite (SCS), which already contains compos-
able modules for user authentication, multi-lingual Web sites, and much more.
SMLserver and SCS is used at the IT University of Copenhagen for running a
course evaluation system and other administrative systems, which amounts to
approximately 30,000 lines of Standard ML (excluding the Basis Library).

Not surprisingly, we have experienced that the static type system of Standard
ML eases development and maintenance of Web applications. However, there are
three aspects of Web application development with SMLserver where further
work may give us better static guarantees:

1. Embedded HTML code is untyped. Data sent to a browser is not guaranteed
to be valid HTML. Use of HTML combinators for constructing HTML code
could increase faith in our code, but to completely ensure validity of HTML
code requires dynamic tests for text embedded in HTML code.

2. Form variables are untyped. The correspondence between form variables
expected by a script and the form variables provided by a request is not
modeled by the Standard ML type system. A solution to this problem and
the problem that HTML code is untyped has been proposed in the <bigwig>
project [18, 2], but the solution builds on a new language tailored specifically
to Web applications.

3. Embedded SQL queries are untyped. An extension to the Standard ML type
system to support embedding of SQL queries has been proposed [3], but
it requires a drastic departure from the Standard ML language with the
addition of extensible records and variant types. Another possibility is to
separate database queries from the program logic and have a tool generate
type safe query functions from query specifications. In this way, queries that
are invalid with respect to the underlying data model can be rejected at
compile time.

9 Conclusion

In this paper, we have presented SMLserver, a multi-threaded Web server plat-
form for executing Web applications written in Standard ML. Making use of the
advanced language features of Standard ML provides many advantages for Web
programming:

— Higher-order functions combined with the rich module language of Standard
ML, provide mechanisms to gain a high degree of code reuse and means for
constructing shallow interfaces; examples include modules for form variable
validation, database interaction, and data caching.

— The static type system of Standard ML provides very good maintenance
properties, which is particularly important for Web programming where, of-
ten, program modifications are exposed to users early. Experience with writ-
ing large Web applications (430,000 lines of code) with SMLserver demon-
strates the importance of the maintenance properties and that SMLserver
scales to the construction of large systems.

Measurements demonstrate that Web applications written with SMLserver per-
form better than Web applications written with often used scripting languages,
both with respect to script execution time and database connectivity.

Finally, we have shown that the region-based memory model scales to a multi-
threaded environment where programs run shortly but are executed often. More
information about SMLserver is available from http://www.smlserver.org.

Acknowledgments

We would like to thank Lars Birkedal, Ken Friis Larsen, Peter Sestoft, and Mads
Tofte for many fruitful discussions about this work.

References

1. Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 171-183. ACM Press, January 1996.

2. Claus Brabrand, Anders Mgller, and Michael I. Schwartzbach. The <Bigwig>
project. ACM Transactions on Internet Technology, 2(2), May 2002.

3. Peter Buneman and Atsushi Ohori. Polymorphism and type inference in database
programming. ACM Transactions on Database Systems, 21(1):30-76, 1996.

4. Eelco Dolstra and Armijn Hemel. mod_haskell, January 2000.
http://losser.st-lab.cs.uu.nl/mod_haskell.

5. Martin Elsman. Static interpretation of modules. In Procedings of Fourth Inter-
national Conference on Functional Programming (ICFP’99), pages 208-219. ACM
Press, September 1999.

6. Martin Elsman and Niels Hallenberg. A region-based abstract machine for the ML
Kit. Technical Report TR-2002-18, IT University of Copenhagen, August 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Martin Elsman and Niels Hallenberg. SMLserver—A Functional Approach to Web
Publishing. The IT University of Copenhagen, February 2002. (154 pages). Avail-
able via http://www.smlserver.org.

Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. In Second
IFIP International Conference on Theoretical Computer Science (TCS’02), pages
448-460, August 2002.

Paul Graunke, Shriram Krishnamurthi, Robert Bruce Findler, and Matthias
Felleisen. Automatically restructuring programs for the web. In 17th IEEE In-
ternational Conference on Automated Software Engineering (ASE’01), September
2001.

Paul Graunke, Shriram Krishnamurti, Steve Van Der Hoeven, and Matthias
Felleisen. Programming the web with high-level programming languages. In Fu-
ropean Symposium On Programming (ESOP’01), April 2001.

Philip Greenspun. Philip and Alex’s Guide to Web Publishing. Morgan Kaufmann,
May 1999. 596 pages. ISBN: 1558605347.

Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’02). ACM Press, June 2002. Berlin, Germany.
Erik Meijer. Server side Web scripting in Haskell. Journal of Functional Program-
ming, 10(1):1-18, January 2000.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

Open Market, Inc. FastCGI: A High-Performance Web Server Interface, April
1996. Technical white paper. Available from http://www.fastcgi.com.

Christian Queinnec. The influence of browsers on evaluators or, continuations to
program web servers. In Fifth International Conference on Functional Program-
ming (ICFP’00), September 2000.

Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Owner’s Man-
ual, June 2000. For version 2.00. 35 pages.

Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic web
documents. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL). ACM Press, January 2000.

Konrad Slind. Object language embedding in Standard ML of New Jersey. In
Proceedings of the Second ML Workshop, CMU SCS Technical Report. Carnegie
Mellon University, Pittsburgh, Pennsylvania, November 1991.

Lincoln Stein and Doug MacEachern. Writing Apache Modules with Perl and C.
O’Reilly & Associates, April 1999. ISBN 1-56592-567-X.

Peter Thiemann. Wash/CGI: Server-side Web scripting with sessions and typed,
compositional forms. In Procedings of Practical Aspects of Declarative Languages
(PADL’02). Springer-Verlag, January 2002. Portland, Oregon.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hgjfeld Ole-
sen, and Peter Sestoft. Programming with regions in the ML Kit (for version 4).
Technical Report TR~-2001-07, IT University of Copenhagen, October 2001.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109-176, 1997.

